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Abstract. Soft robot applications have recently gained importance over rigid
robots for their great maneuverability to work cooperatively with human beings
and in unstructured environments. A modified technique for soft-robot actuation
is based on rapid liquid evaporation using ultrasonic waves and heat reaction. In
any case, the soft robot displacements with rapid actuation contain high non-
linearities and uncertainties. Therefore, the classical control techniques based
on analytical models become impractical to apply into soft robots. A nonlinear
discrete-time model of a soft-robot displacement is proposed from experimental
data in this research. In addition, a novel control law is developed applying a
neuro-fuzzy network with adaptive stage and a sliding mode surface function as
an input to compensate for uncertainties.

Keywords: Soft robot, rapid actuation, discrete-time regression model, sliding
mode function, neuro-fuzzy control law.

1 Introduction

During recent years, the soft robot applications have increased notably for their human
beings interaction, fragile objects handling and unstructured environments exploration,
[1,8]. In addition, the soft robots have a great maneuverability to imitate biological
systems, [7,9]. The soft robots are generally performed through pneumatic actuators.
The injected fluid into an elastomer chamber covers the robot’s volume causing dis-
placements by the pressure on the soft walls.

On the other hand, some conventional soft robot designs are also integrated by heat
exchangers to achieve a liquid vaporization at short term. [3] reported the impacts on
the soft-robot performance when the phase change rate (liquid-gas) actuation is applied
inside of a elastomer chamber. Currently, a novel actuation for soft robots is using a
liquid dispersion by ultrasound waves, as is presented by [5]. Rapid actuation evaporates
the liquid below its boiling point in a suitable time and without any structural material
damage, as is depicted in Figure 1.
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Fig. 1. Schematic of the rapid actuation system. The atomizer is placed directly over the liquid.
Once the ultrasonic wave is applied to the atomizer a mist is generated. The mist contacts the
heater which produces the evaporation.

In general, the classic control of rigid robots is based on analytical modeling, con-
sidering physical and mechanical characteristics of the robot such as: the number and
type of degrees of freedom (dof), length of the links, centers of mass and gravity.
However, the classic Control Based on Analytical Model (CBAM) is inadequate to deal
with flexible robots due to their high nonlinearities and uncertainties during their dis-
placements.

An alternative option to describe the dynamic of the soft robot is applying the data-
driven statistical modeling (DDSM) generating a database from experimentation and
considering the input and output signals history of the robot [12,13]. The Data-Driven
Modeling and Control (DDMC) requires a minimum information of the robotic system
in comparison to conventional CBAM, [11].

From the control theory viewpoint, the soft robot is considered as a nonlinear discrete-
time system with high uncertainties and disturbance during their performance. Hence,
the DDMC can be applied for all kind of robotic systems as manipulators, inertial, and
non inertial including flexible robots, see for instance [6]. Consequently, data-driven
identification and control are a novel option to apply for unknown nonlinear discrete-
time systems as the case of robots, see [2].

The innovations of this work are as follows: (a) the proposal of a discrete-time
position model for a soft robot based on DDSM from a phase change (liquid-gas)
actuation integrated by a nebulizer and a heat exchanger; (b) the development of a novel
control law based on a neuro-fuzzy network with a sliding surface function as input.
The control law combines the reasoning-adaptation stage of the neuro-fuzzy network
and the robustness against uncertainties of the sliding surface function.

Hence, the application of DDSM approximates the position of the soft robot. In
addition, the proposal of an intelligent controller with adaptation stage based on the
dynamic system response guarantee a position control through the discrete-time model
of the soft robot. The structure of this paper is as follows: Section 2 presents the soft-
robot modeling, Section 3 describes the control law design and results, and Section 4
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summarizes the conclusion of this work.

Fig. 2. The experimental data for 8 seconds when the heater was powered by 4, 6 and 8 V.

2 Robotic System

Through this section is presented the strategy to model the dynamic response of the
soft- robot displacements applying a regression method from experimental data. Once,
the regression model estimates the soft-robot displacements a nonlinear discrete-time
function is proposed to validate the dynamic of the system into a closed -loop control.
The proposed control is inspired on an intelligent control by an artificial neuro-fuzzy
network with a sliding mode function as an input to compensate the nonlinearities and
uncertainties during soft-robot displacements.

2.1 Experimental Setup

Remark 1 The proposal of the rapid actuation and the soft robot design have been
discussed in [5]. As well, the data set presented in that research is used to obtain the
regression model and the discrete-time model of the robot displacements to test the
novel control law based on a neuro-fuzzy control in a closed-loop system.

2.2 Soft Robot Modeling

A regression model is presented using the least squares method, which is applied to
the experimental results presented by [5]. The proposed regression model requires
less data to estimate the displacements of the soft-robot, on the other hand, Artificial
Neural Network (ANN) techniques require an extensive database for the training of
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their parameters. In the case of Fuzzy Logic (FL) the model estimation is based on the
human experience, then, a unique model is complicated to obtain. Figure 2 depicts the
nonlinear relationship between the soft-robot displacements respect to the voltage input
of the heater.

A strategy to obtain a trend-fit approximation function from experimental data is
minimizing the residual errors sum of all available data between the measurements
yi,measurements and the estimated yi,computed as follows:

Sr =

n∑
i=1

(yi,measurements − yi,computed)
2. (1)

Hence, a regression model is proposed based on a power equation in the follow-
ing equation:

y = a0t
a1V a2 , (2)

where y represents the position, t is the time, V is the input voltage and am represents
the coefficients to determine by the least squares method. Thus, applying the natural
logarithms properties is possible to linearize the equation (2):

ln(y) = ln(a0) + a1 ln(t) + a2 ln(V ). (3)

The equation (3) fits experimental data for multivariable regressions. Replacing (3)
in (1) is found the quadratic error sum function:

Sr =

n∑
i=1

(ln(y)− ln(a0)− a1 ln(t)− a2 ln(V ))2. (4)

The quadratic function in (4) is derived as
∂Sr

∂am
= 0 to find the coefficients am and

it minimizes the error between the measurements and computed data:

∂Sr

∂a0
=

2

a0

n∑
i=1

[ln(a0)− a1 ln(ti)− a2 ln(Vi)] = 0, (5)

∂Sr

∂a1
= −2

n∑
i=1

ln(ti) [ln(a0)− a1 ln(ti)− a2 ln(Vi)] = 0, (6)

∂Sr

∂a2
= −2

n∑
i=1

ln(vi) [ln(a0)− a1 ln(ti)− a2 ln(Vi)] = 0. (7)

Once, the equations system for the regression model has been solved, the coeffi-
cients am of the proposed power function are obtained:

y = 0.0191 t0.8076 V 2.3752. (8)

Figure 3 shows a comparison between the experimental data and the estimated data
according to (8).
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Corollary 1 The polynomial interpolation model could be considered as unsatisfac-
tory estimation, when the analyzed data set shows substantial errors. In contrast, a
general approximation of data trend using a power regression is more useful to minimize
the sum of the residual errors between the measured-output variable yi,measured from (8)
and its mean yi,mean.

Fig. 3. Comparison between the experimental data and the regression model.

The magnitude of the residual error associated with the dependent variable (y) of
the regression model is:

St =

n∑
i=n

(yi,measured − yi,mean)
2. (9)

The difference between St − Sr quantifies the error between the data and a straight
line instead of an average value. Since, the magnitude of this quantity depends on the
scale, the difference is normalized respect to St to obtain the following form:

r2 =
St − Sr

St
, (10)

where r2 and r are the determination and correlation coefficients, respectively. In a
perfect fit Sr → 0 , therefore r2 = 1. That means, 100% fit of the model according to
the experimental data set. The standard error is defined as follows:

Sy/x =

√
Sr

n− (m+ 1)
, (11)

where m = 3 are the degrees of freedom in the power equation (8) and n = 19 are the
data set numbers for this study in Figure 2. The adjusted coefficient of determination
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r2adjusted demonstrates the degree of effectiveness of the independent variables on the
dependent variable:

r2adjusted = 1− 1
n− 1

n−m+ 1
(1− r2). (12)

Table 1 shows the regression model analysis. The results from the experimental
data set and the regression model are concluded below. The regression equation (8) for
the soft robot displacement has a correlation degree r = 99.061% between the inputs
variables and the output variable.

Tabla 1. Statistical aspects of the regression model as a function of the soft robot displacement.

Parameter Evaluation
r 0.99061

r2 0.98131

r2adjusted 0.97897

Sy/x 0.53059

m 3

n 19

The regression model r2 = 98.131% describes of the phenomenon uncertainties.
Furthermore, the variables used for the model represents r2adjusted = 97.7897% of ef-
fectiveness. Finally, the standard error estimation is Sy/x = ±0.53059 mm. Once,
the regression model is obtained is possible to approximate a nonlinear discrete-time
function by the Taylor series expansion, as it is presented below.

Corollary 2 Taylor serie approximates the model through a polynomial function as:

y(x) = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + ...+ an(x− c)n. (13)

The compact form from is:

y(x) =

∞∑
n=0

an(x− c)n, (14)

where x = c and (14) is derived successively:

dny(c)

dxn
= n!an. (15)

Then, the approximation of the function by the Taylor serie is:

y(x) =

∞∑
0

1

n!

dny(c)

dxn
(x− c)n. (16)
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The forward finite differences calculate a value in front of a reference point, where
x = xi+1, x = c, ∆x = xi+1 − xi and y(xi) = yi, then the Taylor series is:

yi+1 =
1

0!
yi+

1

1!

dyi
dx

∆x+
1

2!

d2yi
dx2

∆x2 + ...+
1

n!

dnyi
dxn

∆xn (17)

= yi+
dyi
dx

∆x+
1

2

d2yi
dx2

∆x2 + ...+
1

n!

dnyi
dxn

∆xn. (18)

For the case of backward finite differences, the Taylor series is obtained as follows,
where x = xi−1, x = c, −∆x = xi−1 − xi and y(xi) = yi, then Taylor serie is:

yi−1 =
1

0!
yi−

1

1!

dyi
dx

∆x+
1

2!

d2yi
dx2

(−∆x2) + ...+
1

n!

dnyi
dxn

(−∆xn) (19)

= yi−
dyi
dx

∆x+
1

2

d2yi
dx2

(−∆x2) + ...+
1

n!

dnyi
dxn

(−∆xn). (20)

This series calculate a value behind of a reference point. Therefore, the expansion
of Taylor series approximate the position function obtained with the regression model
in (8) as follows:

y(k + 1) = y(k) +
∂y

∂t
Ts +

1

2

∂2y

∂t2
T 2
s . (21)

2.3 Transition from Regression Model to Discrete Model

The first derivative considers the coefficients and the regression model in (8) in order to
approximate the discrete model as follows:

∂y

∂t
≈ 0.01545k−0.1924(V (k))2.3752

[mm

s

]
. (22)

This term is associated to the velocity of the system, where k is the discrete time
index and V is the input voltage. The second derivative is related to the acceleration of
the system:

∂2y

∂t2
≈ −0.00297(V (k))2.3752k−1.924

[mm

s2

]
. (23)

From the Taylor series is obtained:

y(k + 1) = y(k) +
∂y

∂t
Ts +

1

2

∂2y

∂t2
T 2
s . (24)

Substituting (23) and (24) in (22) is obtained the discrete-time function:

y(k + 1) = y(k) + 0.01545k−0.1924(u(k))2.3752Ts

− 1
2 (−0.00297(u(k))2.3752k−1.924)T 2

s . (25)

The expression in (25) approximates the nonlinear system dynamic of the soft robot
working within discrete-time in order to apply a novel neurofuzzy control.

37

Discrete-Time Modeling and Control for a Soft Robot Displacements based on Experimental Data

Research in Computing Science 151(6), 2022ISSN 1870-4069



3 Control Law

This section presents a novel intelligent controller inspired by an artificial neuro-fuzzy
network considering the nonlinear discrete-time function in (25), which describes the
displacement of the soft robot. The input signal to the nonlinear discrete-time function
is the voltage (control variable) applied to the heater during the soft-robot actuation,
and the output signal is the displacement (controlled variable) generated by the soft-
robot. Therefore, the following assumptions should be satisfied for the control law
design.

µPLµPLµPL

µPSµPSµPS

µZEµZEµZE

µNSµNSµNS

µPSµPSµPS

βPLβPLβPL

βPSβPSβPS

βZEβZEβZE

βNSβNSβNS

βPSβPSβPS

∑
s(k + 1)s(k + 1)s(k + 1) u(k)u(k)u(k)

Fig. 4. NFN architecture and s(k + 1) as input signal.

Assumption 1 The robot is considered Lipschitz and exists a positive constant L that
defines the direct relationship between system input-output ∥ y(k + 1) ∥≤ L ∥ u(k) ∥.
that means, a change of the system output imposes a change of the system input.

Assumption 2 The output of the robotic system is observable, i.e., y(k+1) = Φ̂(k)u(k)
∀k > 0. It is possible to know the equivalent model of the system from the measured
output signals.

The artificial neuro-fuzzy network is characterized by an adaptive stage based on
a human experience and the intuitive initial parameters selection. The adaptation stage
adjusts its parameters using the descending gradient technique. The neuro-fuzzy net-
work considers the plant as an unknown nonlinear system working in the discrete-time
domain.
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Therefore, the neuro-fuzzy network only requires to know the input and output
signals from the system to control the plant. The structure of Neuro-Fuzzy Network
(NFN) is based on the human knowledge and the intuitive initialization of its parameters
[10] as is referred Figure 4. A sliding mode surface function s(k+1) in (26) is proposed
as input to the NFN:

s(k + 1) = C1e(k + 1) + C2e(k), (26)

where C1, C2 ∈ R+ and the position error is defines as:

e(k + 1) = yd(k + 1)− y(k + 1), (27)

where y(k + 1) is the current position and yd(k + 1) is the desired position.

3.1 Proposed NFN Architecture

NFN structure has 4 layers and 5 nodes.

– Layer 1. This layer is considered as the input to the artificial neural network
s(k + 1), also this signal is sent to each node in the next layer.

– Layer 2. This layer contains the membership functions. Each node in this layer is
a membership function corresponding to the design of the linguistic variables. The
output of each node is calculated as follows:

ϕ(k) = µ(s(k)). (28)

– Layer 3. This layer is the adaptation stage where the parameters β(k + 1) are ad-
justed.

– Layer 4. This layer is the output of the NFN:

O(k) =

N∑
i=1

ϕ(k)β(k), (29)

where N represents the number of linguistic variables.

3.2 Adaptation Algorithm

An adaptive technique based on the descending gradient method is proposed to adjust
NFN parameters. First, an objective function is defined to achieve the optimal value
of the network parameters. The parameters are adjusted at each time step through a
quadratic function ξ(k + 1) in terms of the control error:

ξ(k + 1) =
1

2
s2(k + 1). (30)

According to the descending gradient method, the adaptation of the parameters
β(k + 1) is computed as follows:

β(k + 1) = β(k)− η
∂ξ(k + 1)

∂β(k)
, (31)
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where η is the learning rate and applying the chain rule:

∂ξ(k + 1)

∂β(k)
=

∂ξ(k + 1)

∂s(k + 1)

∂s(k + 1)

∂e(k + 1)

∂e(k + 1)

∂y(k + 1)

∂y(k + 1)

∂u(k)

∂u(k)

∂O(k)
(32)

= s(k + 1)C1[−1]Φ̂(k)µ(s(k)), (33)

When substituting (33) in (31) is found the adaptation law:

β(k + 1) = β(k) + ηs(k + 1)C1Φ̂(k)µ(s(k)). (34)

Fig. 5. Design of the membership functions for SMC-NFN.

Remark 2 where Φ̂(k) = y(k + 1)/u(k) denotes the approximated input and output
relationship of the system in (25), therefore the representation of the ideal system Φ∗(k)
is given by:

Φ∗(k) = Φ̂(k) + ϵ(k), (35)

where ϵ(k) is the estimation error and the control law is:

u(k) = µ(s(k))βs(k). (36)

Remark 3 The novelties in the proposed neuro-fuzzy-control are:

– The five membership functions are designed according to the robot displacement
as is shown in Figure 5.
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– The sliding surface function s(k+1) improves the tracking control and robustness.

– The adaptation law (34) permits to update the neuro-fuzzy parameters β(k+1) and
it captures instantaneous changes on the system.

3.3 Simulations

The five linguistic variables are designed according to the physical characteristics of
the robot. Therefore, the linguistic variables are µi : PL is positive large, PS is positive
small, ZE is zero, NS is negative small and NL es negative large. Figure 5 shows the
membership function design and the Table 2 shows the control setting parameters. The
IF-THEN rules are established by the input function s(k + 1) and the output u(k):

∑ e(k)

s(k) NFN Os u(k)
Position
control Soft robot

ModelΦ̂(k)
Adaptation
β(k + 1)

Human knowledge

IF-THEN
rules

yd(k)

y(k + 1)

z−1

u(k)

Fig. 6. Block diagram of the closed-loop system.

Tabla 2. Control setting parameters values.

Parameters Value
βPL(0) 2.25
βNL(0) 1.85
βZE(0) 0.5
βNS(0) -1.65
βNL(0) -1.85
C1 1.45
C2 0.55
η 0.85

– IF s(k + 1) Is positive large (PL), THEN u(k) Is positve large (PL).
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– IF s(k + 1) is positive small (PS), THEN u(k) is positve small (PS).
– IF s(k + 1) is zero (ZE), THEN u(k) Is Zero (ZE).
– IF s(k + 1) is negative small (NS), THEN u(k) Is negative small (NS).
– IF s(k + 1) is negative large (NL), THEN u(k) Is negative large (NL).

Fig. 7. SMC-NFN controller with adaptive parameters β(k + 1).

Figure 6 depicts the closed-loop system. The control law in (36) represents the
system input, the nonlinear discrete-time function in (25) represents the system output,
and the adaptation law is in (34). NFN guarantees the adaptation and learning stages
based on the plant empirical knowledge, as well the sliding mode function in (26)
provides robustness against uncertainties inside of the NFN structure.

Figure 7 shows the simulation of the controller for a regulation position task where
the control law design remedies the control error convergence to zero, successfully.
Figure 8 depicts the parameters β(k + 1) for the the proposed adaptive law in (34).
Moreover, the proposed controller is compared to a conventional PID controller in order
to review its advantages.

The conventional PID controller is:

u(k) = Kpe(k) +Kd [e(k)− e(k − 1)]Ts +Ki

[
e(k)− e(k − 1)

Ts

]
. (37)

where the proportional, integral and derivative gains are Kp = 3.95, Ki = 0.01 and
Kd = 0.01, respectively. Figure 10 depicts the simulation results applied to the discrete-
time model in (25). The comparison bewteen the proposed control and the conventional
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Fig. 8. Adaptive law for βi(k + 1).

Fig. 9. SMC-NFN controller with disturbance response.

control is observed directly on the error convergence, meanwhile the control error
e(k) = 0 [mm] in the neuro-fuzzy control, and the control error
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Fig. 10. PID controller.

e(k) = 0.08212 [mm] in PID is not enough to converge.
Additional simulation of the control system is presented at Figure 9 in order to

validate the proposed neuro-fuzzy control, a disturbance was included in the simulation
to demonstrate the adaptation and the response against sudden changes in the system.

4 Conclusions

An statistical data regression model is proposed to describe the displacements of a soft
robot based on the historical response (experimentation) of the input and output signals.
Hence, the expansion of multi-variable Taylor series approximated a nonlinear discrete-
time model from the SDDM.

A novel control law for the nonlinear discrete-time model of the robot was proposed
based on the concept of NFN and a sliding surface function as input. The adaptive
law permits to capture instantaneous changes in the closed loop system. Moreover,
the sliding surface function improves the tracking control. The control law presented
combines the adaptive stage and human experience knowledge of the system from NFN
and the uncertainties compensation from the sliding surface function.

As well, the proposed control law guarantee the control error convergence in com-
parison to a conventional PID controller that does not compensate the non-linearities of
the system. As future work, the research is led to test a Data-Driven Model and Control
(DDMC) in an experimental setup only using the association of the input signal (heater
voltage) and the output signal (soft-robot displacement). Moreover, the stability analysis
will be developed to guarantee the control error convergence.
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13. Montes-González, F. A., Rodrı́guez-Rosales, N. A., Ortiz-Cuellar, J. C., Muñiz-Valdez, C.
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